An iterative hard thresholding approach to ℓ0 sparse Hellinger NMF
نویسندگان
چکیده
Performance of Non-negative Matrix Factorisation (NMF) can be diminished when the underlying factors consist of elements that overlap in the matrix to be factorised. The use of `0 sparsity may improve NMF, however such approaches are generally limited to Euclidean distance. We have previously proposed a stepwise `0 method for Hellinger distance, leading to improved sparse NMF. We extend sparse Hellinger NMF by proposing an alternative Iterative Hard Thresholding sparse approximation method. Experimental validation of the proposed approach is given, with a large improvement over NMF methods when learning is performed on a large dataset.
منابع مشابه
Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملAlternating direction algorithms for ℓ0 regularization in compressed sensing
In this paper we propose three iterative greedy algorithms for compressed sensing, called iterative alternating direction (IAD), normalized iterative alternating direction (NIAD) and alternating direction pursuit (ADP), which stem from the iteration steps of alternating direction method of multiplier (ADMM) for `0-regularized least squares (`0-LS) and can be considered as the alternating direct...
متن کاملComparison of threshold-based algorithms for sparse signal recovery
Intensively growing approach in signal processing and acquisition, the Compressive Sensing approach, allows sparse signals to be recovered from small number of randomly acquired signal coefficients. This paper analyses some of the commonly used threshold-based algorithms for sparse signal reconstruction. Signals satisfy the conditions required by the Compressive Sensing theory. The Orthogonal M...
متن کاملHard Thresholding Pursuit: An Algorithm for Compressive Sensing
We introduce a new iterative algorithm to find sparse solutions of underdetermined linear systems. The algorithm, a simple combination of the Iterative Hard Thresholding algorithm and of the Compressive Sampling Matching Pursuit or Subspace Pursuit algorithms, is called Hard Thresholding Pursuit. We study its general convergence, and notice in particular that only a finite number of iterations ...
متن کاملProximal iterative hard thresholding methods for wavelet frame based image restoration
The iterative thresholding algorithms started in [1] (both soft and hard) and in [2, 3, 4] (soft) for wavelet based linear inverse problems restoration with sparsity constraint. The analysis of iterate soft thresholding algorithms has been well studied under the framework of foward-backward splitting method [5, 6] and inspired many works for different applications and related minimization probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016